Review
Snakebite by *Micrurus averyi* (Schmidt, 1939) in the Brazilian Amazon basin: Case report

Iran Mendonça da Silva, a, b Jorge Contreras Bernal, a, b, Pedro Ferreira Gonçalves Bisneto, b, Antônio Magela Tavares, b, Valéria Mourão de Moura, a, b, Claudio S. Monteiro-Junior, a, b, Rima Raad, a, b, Paulo Sergio Bernarde, c, Jacqueline de Almeida Gonçalves Sachett, a, b, *, Wuelton Marcelo Monteiro, a, b

a Escola Superior de Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil

b Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil

c Laboratório de Herpetologia, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, Acre, Brazil

A R T I C L E I N F O

Article history:
Received 22 September 2017
Received in revised form 20 November 2017
Accepted 23 November 2017
Available online 24 November 2017

Keywords:
Coral snake
Edema
Micrurus
Snakebite

A B S T R A C T

Micrurus snakes, commonly known as coral snakes, are responsible for 0.4% of the snakebites envenomings in Brazil. In this report, we describe a case of envenoming by *Micrurus averyi*, the black-headed coral snake, recorded in the western Brazilian Amazon. To the best of our knowledge, this is the first published case perpetrated by this species. The major complaint of the patient was an intense local pain and paresthesia. Examination of the bite site revealed edema extending from the left foot up the left leg that was accompanied by erythema involving the foot and distal third of the leg. Systemic signs at admission included nausea and drooling. The patient was treated with 100 mL of coral snake antivenom and intravenous analgesics (dipyrone) and was discharged 48 h post-admission with no complaints. The patient showed more intense local edema than that generally described in several other cases of *Micrurus* bites in Brazil.

© 2017 Published by Elsevier Ltd.

Contents

1. Introduction .. 51

2. Case report .. 52

 2.1. Clinical description ... 52

 2.2. The cause of envenoming ... 53

3. Discussion .. 53

 Acknowledgments ... 54

 References .. 54

1. Introduction

In Americas, the average annual incidence of snakebite is ~57,500/year (6.2 per 100,000 population) and mortality is close to 370 deaths (0.04 per 100,000 population) (Chippaux, 2017). The annual frequency of venomous snakebites reported by the Brazilian Ministry of Health since 2005 is ~22,000–23,000 cases/year (~11 per 100,000 inhabitants), i.e., a stable frequency. The data from 2001 to 2004 probably reflect under notification and not a trend towards an increase in the number of cases from 2005 to the present day. Snakebites incidence is higher in the Brazilian Amazon states, representing an occupational health problem for rural and riverine populations, with a rate of 55.4 cases/100,000 inhabitants
in 2015 (Brasil. Ministério da Saúde, 2016). *Micrurus* spp. snakes, commonly known as coral snakes, the Elapidae representatives of the New World, are responsible by 0.4% of the snake envenomings in Brazil (Brasil. Fundação Nacional de Saúde, 2001), the same proportion recorded in the Brazilian Amazon (Feitosa et al., 2015).

Most coral snake bites reported in Brazil was caused by *M. corallinus* and *M. frontalis*, with several patients showing signs of acute myasthenia (Bucaretchi et al., 2016). There are few clinical reports of envenoming by *Micrurus* spp. in the Brazilian Amazon, although bites by *M. filiformis*, *M. hemprichii* and *M. surinamensis* have been reported (Pardal et al., 2010; Wen et al., 2015). Neuro-muscular blockade is the hallmark of systemic envenomation by *Micrurus* spp. and can progress to acute respiratory failure, the cause of death in this type of snakebite (Bucaretchi et al., 2016). Although rare, deaths can occur where respiratory support (mechanical ventilation) is unavailable, such as in remote locations in the Amazon region (Wen et al., 2015).

In this report, we describe a case of envenoming by *Micrurus averyi* (Schmidt, 1939), the black-headed coral snake in the municipality of Presidente Figueiredo, in the Brazilian state of Amazonas in the western Brazilian Amazon.

2. Case report

2.1. Clinical description

In July 2017, a previously healthy 7-year-old girl was admitted to the emergency service in Presidente Figueiredo, a municipality located 107 km from Manaus, capital of the state of Amazonas, Western Brazilian Amazon (Fig. 1).

The girl was accompanied by her father, who said that the hospital admission occurred 15 min after she being bitten in the foot (Fig. 2) by a coral snake, near the front door of their house, in the outskirts of the urban area, surrounded by a forest. The bite occurred at 10:00 p.m. The major complaint of the patient was intense local pain and paresthesia. Examination of the bite site revealed edema extending from the left foot all over the left leg associated with erythema in the foot and distal third of the leg. A purpuric spot measuring approximately 2 cm, surmounted by a hematic crust, corresponding to the bite site, was observed on the lateral face of the left foot (Fig. 2). Systemic signs at admission included nausea and drooling. Considering the early clinical manifestations that included important local features plus salivation, the local medical staff decided to treat the patient with 100 mL of coral snake antivenom intravenously (soro antielapídico bivalente, Instituto Butantan, São Paulo, SP, Brazil; Fab2; 1 vial = 10 mL; 1 mL of antivenom neutralizes 1.5 mg of reference *M. frontalis* venom in mice). Before antivenom infusion, the patient was pre-medicated intravenously with steroids plus H1 and H2 antagonists (IV hydrocortizone 500 mg, IV promethazine 50 mg, IV dexchlorpheniramine and IV ranitidine 50 mg); dipyrone (750 mg) was also given intravenously for pain relief. No acute adverse reaction to antivenom was observed in the patient’s follow-up.

After antivenom administration, the patient was referred to the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD) the tertiary reference center for snakebites treatment in the state of Amazonas. At the admission to this service, patient was afebrile and...
denies coughing, diarrhea, sialorrhea or other complaints. Heart rate was 86 bpm and respiratory rate was 18 bpm. Normal heart and respiratory sounds. No signs of neurological focus and of meningoirritation. Otoscopy and oroscopy without alterations. No palpable visceromgalias and no lymph node enlargement. Abdomen flaccid and painless. The clinical features upon admission still included local pain and edema. Apart from mild leukocytosis (11,580 cells/mm³), all the laboratory results (whole blood cloting test, hemoglobin, platelets and blood serum levels of creatine kinase, lactate dehydrogenase and creatinine) were within the reference values for age. The patient received intravenous dipyrone every 6 h for two days, with progressive improvement in pain, and was discharged with no complaints after 48 h of hospitalization.

After 24 h of hospitalization, patient’s general status remains normal, but she still complained of pain at the bite site, which improved with the administration of dipyrone. Diuresis and evacuation were present. Local manifestations improved and bite site presented no sign of bacterial secondary infection. Patient remained hospitalized for 48 h until discharge with no complaints. Oral dipyrone was prescribed in case of pain.

2.2. The cause of envenoming

Patient's father brought the offending snake to the FMT-HVD, where the specimen was kept in a 40% formalin solution until its identification by a herpetologist (P.S.B.) as an adult male Micrurus averyi, commonly known as 'the black-headed coral snake' (Fig. 3). The snake was killed in front of the main door of the wooden house, located close to a forest reserve. The snake’s head was severed during capture and was not brought with the dead snake. The specimen presented 9 black rings along its body and 7 black rings along its tail. Without the head, morphometric analysis showed a total length of 45.5 cm and a length of 39.5 cm from the severed extremity to the cloaca.

3. Discussion

In the Americas, the main representatives of the family Elapidae are coral snakes of the genus Micrurus, of which 30 species occur in Brazil (Costa and Bernilis, 2015). The species most frequently involved in human envenom ing are M. corallinus, M. frontalis and M. lemniscatus (Bucaretchi et al., 2016). In the present study, we report a case of human envenomation caused by M. averyi in the Brazilian Amazon. This species has a large geographical distribution in the Amazon basin, including Suriname and Guyana, where the species was first described (Schmidt, 1939) and the Brazilian Amazon, in the states of Amazonas, Pará, Mato Grosso and Roraima (Campbell and Lamar, 2004; Feitosa et al., 2015; Vanzolini, 1985; Velloso-Calleffe, 1997). These snakes occur in primary forests or in disturbed areas of crops and pasture, including records of some species (e.g., M. lemniscatus and M. surinamensis) in urban areas. Most species have fossorial or terrestrial habits, but two species (M. lemniscatus and M. surinamensis) have aquatic habits. Micrurus mainly feed on elongated vertebrates (other snakes, amphibians, lizards, and caecilians) but also on fishes (Callithys, Gymnotus, and Synbranchus marmoratus, predated by Micrurus lemniscatus and Micrurus surinamensis) and velvet worms (recorded for M. hemprichii) (Bernarde, 2014; Martins and Oliveira, 1999; Silva Jr and Aird, 2001). Micrurus averyi is a fossorial and cryptozoic forest species that may be active during the day and at night, when it feeds on lizards and snakes (Martins and Oliveira, 1999). In Manaus, this species is present in periurban forest (Reserva Adolfo Ducke) (Martins and Oliveira, 1999), which would explain the occurrence of this snake at the site of this accident.

The primary effect of Micrurus venoms is neurotoxicity that is mediated by pre- and postsynaptic neurotoxins. Presynaptic neurotoxins block neurotransmission by inhibiting acetylcholine release from nerve terminals, whereas postsynaptic neurotoxins act by blocking postsynaptic nicotinic receptors (Brasil Fundação Nacional de Saúde, 2001). This neuromuscular blockade results in ptosis; ophthalmoplegia; dizziness; blurred vision; weakness; dysphagia; dyspnea; inability to walk; drooling and respiratory failure (Bucaretchi et al., 2016). Acute respiratory failure has been observed in accidents caused by M. surinamensis that occurred in the state of Pará, as a result of paralysis of the respiratory muscles. In this state, M. filiformis also causes envenomings with epigastric pain and vomiting (Pardal et al., 2010). At admission, the patient reported here presented with nausea and drooling as systemic manifestations, which ceased after antivenom administration. Although speculative, we may infer that the good outcome of this patient was attributable to the early medical assistance after the bite (around 15 min), with the use of coral snake antivenom. In Brazil, M. corallinus and M. frontalis venoms are used for the production of Micrurus antivenom (Wen et al., 2015). However, it was demonstrated by in vivo and in vitro neutralization assays that the coral snake antivenom produced in Brazil does not fully neutralize the activities of some Micrurus species venoms (Tanaka et al., 2010).

Local features, mainly paresthesia and pain, were frequently reported in Micrurus snakebites, with the pain being intense in some cases (Bucaretchi et al., 2016). In this work, the major complaint of the patient was intense local pain that required symptomatic medication at admission and during hospitalization. Envenomining by another Amazonian species, M. filiformis, has also been reported to cause pain and mild edema at the bite site (Pardal et al., 2010). In Amazonian Ecuador, a bite by M. lemniscatus helleri resulted in severe local pain with no other marked local effects (Manock et al., 2008). In the present case, examination of the bite site revealed also erythema and intense edema extending from the left foot all over the left leg associated with erythema in the foot and distal third of the leg. There are few references of edematogenic effects produced by Micrurus sp. venoms in humans (Bucaretchi et al., 2016; Pardal et al., 2010). However, a low edematogenic effect was described for M. frontalis and Micrurus nigrocinctus venoms in mice (Gutiérrez et al., 1980; Sanchez and et al., 1992). Edematogenic activity was also observed for M. ibiboensis, M. spixii, M. lemniscatus carvalhoi, M. frontalis frontalis, M. surinamensis surinamensis and M. nigrocinctus venoms (Cecchini et al., 2005; Tambourgi et al., 1994). Moreover, it was noted also that PLA2 from Micrurus venoms have been shown to be edematogenic (Casais-e-Silva et al.,

![Fig. 3. The Micrurus averyi specimen responsible for the bite. Ventral (A) and dorsal (B) aspects.](image)
2016; Rey-Suárez et al., 2017). Here, *M. averyi* venom caused intense edema and discrete hemorrhage in mice, as confirmed by histological examination (Barros et al., 1994), in agreement with the extensive edema seen in the present case.

Envenomning by *M. averyi* can cause important local alterations (edema, pain and paresthesia), without signs of systemic neurotoxicity. To the best of our knowledge, this is the first published case involving this species.

Acknowledgments

We thank the clinical and laboratory staff of the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado for their help in managing this case.

References

